Evolution of Preset Void and Damage Characteristics in Aluminum during Shock Compression and Release

Author:

Wan Ya-TingORCID,Shao Jian-Li,Yu Guang-Ze,Guo Er-Fu,Shu Hua,Huang Xiu-Guang

Abstract

It is well known that initial defects play an essential role in the dynamic failure of materials. In practice, dynamic tension is often realized by release of compression waves. In this work, we consider void-included single-crystal aluminum and investigate the damage characteristics under different shock compression and release based on direct atomistic simulations. Elastic deformation, limited growth and closure of voids, and the typical spall and new nucleation of voids were all observed. In the case of elastic deformation, we observed the oscillatory change of void volume under multiple compression and tension. With the increase of impact velocity, the void volume reduced oscillations to the point of disappearance with apparent strain localization and local plastic deformation. The incomplete or complete collapsed void became the priority of damage growth under tension. An increase in sample length promoted the continuous growth of preset void and the occurrence of fracture. Of course, on the release of strong shock, homogeneous nucleation of voids covered the initial void, leading to a wider range of damaged zones. Finally, the effect of the preset void on the spall strength was presented for different shock pressures and strain rates.

Funder

the Shanghai Sailing Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanomechanics and Plasticity;Nanomaterials;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3