Investigation of Heater Structures for Thermal Conductivity Measurements of SiO2 and Al2O3 Thin Films Using the 3-Omega Method

Author:

Kühnel FabianORCID,Metzke ChristophORCID,Weber Jonas,Schätz JosefORCID,Duesberg Georg S.,Benstetter GüntherORCID

Abstract

A well-known method for measuring thermal conductivity is the 3-Omega (3ω) method. A prerequisite for it is the deposition of a metal heater on top of the sample surface. The known design rules for the heater geometry, however, are not yet sufficient. In this work, heaters with different lengths and widths within the known restrictions were investigated. The measurements were carried out on SiO2 thin films with different film thicknesses as a reference. There was a significant difference between theoretical deposited heater width and real heater width, which could lead to errors of up to 50% for the determined thermal conductivity. Heaters with lengths between 11 and 13 mm and widths of 6.5 µm or more proved to deliver the most trustworthy results. To verify the performance of these newfound heaters, additional investigations on Al2O3 thin films were carried out, proving our conclusions to be correct and delivering thermal conductivity values of 0.81 Wm−1 K−1 and 0.93 Wm−1 K−1 for unannealed and annealed samples, respectively. Furthermore, the effect of annealing on Al2O3 was studied, revealing a significant shrinking in film thickness of approximately 11% and an increase in thermal conductivity of 15%. The presented results on well-defined geometries will help to produce optimized heater structures for the 3ω method.

Funder

Deutsche Forschungsgemeinschaft

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie StMWi

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of thermal properties of CVD diamond films;Journal of Materials Science;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3