Ultralight Open-Cell Graphene Aerogels with Multiple, Gradient Microstructures for Efficient Microwave Absorption

Author:

Mei QilinORCID,Xiao HanORCID,Ding Guomin,Liu Huizhi,Zhao Chenglong,Wang Rui,Huang Zhixiong

Abstract

Development of high-performance graphene-based microwave absorbing materials with low density and strong absorption is of great significance to solve the growing electromagnetic pollution. Herein, a controllable open-cell structure is introduced into graphene aerogels by the graphene oxide (GO) Pickering emulsion. The open-cell graphene aerogel (OCGA) with multiple microstructures shows a significantly enhanced microwave absorption ability without any additions. A high microwave absorption performance with the minimum value of reflection loss (RLmin) of −51.22 dB was achieved, while the material density was only 4.81 mg/cm3. Moreover, by means of centrifugation, the graphene cells were arranged by their diameter, and a gradient, open-cell graphene structure was first fabricated. Based on this unique structure, an amazing microwave absorption value of −62.58 dB was reached on a condition of ultra-low graphene content of 0.53 wt%. In our opinion, such excellent microwave absorption performance results from multiple reflection and well-matched impedance brought by the open-cell and gradient structure, respectively. In addition, the structural strength of the OCGA is greatly improved with a maximum increase of 167% due to the introduction of cell structure. Therefore, the OCGAs with the gradient structure can be an excellent candidate for lightweight, efficient microwave absorption materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3