Abstract
Based on the low utilization rate of visible light and the high-charge carriers-recombination efficiency of bismuth oxybromide (BiOBr), in this work, noble metal Ag was used to modify BiOBr, and Ag-doped BiOBr nanoplates (Ag-BiOBr) were obtained through a one-step hydrothermal method. Compared with BiOBr, the absorption edge of Ag-BiOBr showed a redshift from 453 nm to 510 nm, and the absorption efficiency of visible light was, obviously, improved. Bisphenol A (BPA) was chosen as the target pollutant, to evaluate the photocatalytic performance of the samples. Ag0.1-BiOBr showed the highest degradation efficiency. The intrinsic photocatalytic activity of Ag0.1-BiOBr, under visible light, was approximately twice as high as that of BiOBr. In this way, a new visible-light-driven photocatalyst was proposed, to fight against organic pollution, which provides a promising strategy for water and wastewater treatment.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献