Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels

Author:

Li BingqingORCID,Dong Bin,Shi TianxiangORCID,Zhan HaifeiORCID,Zhang Yongqiang

Abstract

Through atomistic simulations, this work investigated the permeability of hexagonal diamond nanochannels for NaCl solution. Compared with the multilayer graphene nanochannel (with a nominal channel height of 6.8 Å), the diamond nanochannel exhibited better permeability. The whole transportation process can be divided into three stages: the diffusion stage, the transition stage and the flow stage. Increasing the channel height reduced the transition nominal pressure that distinguishes the diffusion and flow stages, and improved water permeability (with increased water flux but reduced ion retention rate). In comparison, channel length and solution concentration exerted ignorable influence on water permeability of the channel. Further simulations revealed that temperature between 300 and 350 K remarkably increased water permeability, accompanied by continuously decreasing transition nominal pressure. Additional investigations showed that the permeability of the nanochannel could be effectively tailored by surface functionalization. This work provides a comprehensive atomic insight into the transportation process of NaCl solution in a diamond nanochannel, and the established understanding could be beneficial for the design of advanced nanofluidic devices.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3