Quantum Phase Transition in the Spin Transport Properties of Ferromagnetic Metal-Insulator-Metal Hybrid Materials

Author:

Hussien Musa A. M.ORCID,Ukpong Aniekan MagnusORCID

Abstract

Perpendicular magnetic tunnel junctions provide a technologically important design platform for studying metal-insulator-metal heterostructure materials. Accurate characterization of the sensitivity of their electronic structure to proximity coupling effects based on first-principles calculations is key in the fundamental understanding of their emergent collective properties at macroscopic scales. Here, we use an effective field theory that combines ab initio calculations of the electronic structure within density functional theory with the plane waves calculation of the spin polarised conductance to gain insights into the proximity effect induced magnetoelectric couplings that arise in the transport of spin angular momentum when a monolayer tunnel barrier material is integrated into the magnetic tunnel junction. We find that the spin density of states exhibits a discontinuous change from half-metallic to the metallic character in the presence of monolayer hexagonal boron nitride when the applied electric field reaches a critical amplitude, and this signals a first order transition in the transport phase. This unravels an electric-field induced quantum phase transition in the presence of a monolayer hexagonal boron nitride tunnel barrier quite unlike molybdenum disulphide. The role of the applied electric field in the observed phase transition is understood in terms of the induced spin-flip transition and the charge transfer at the constituent interfaces. The results of this study show that the choice of the tunnel barrier layer material plays a nontrivial role in determining the magnetoelectric couplings during spin tunnelling under external field bias.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3