Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic Imaging Based on HOG + SVM

Author:

Hong Xiaobin,Huang LiuweiORCID,Gong Shifeng,Xiao Guoquan

Abstract

Underwater pipelines are the channels for oil transportation in the sea. In the course of pipeline operation, leakage accidents occur from time to time for natural and man-made reasons which result in economic losses and environmental pollution. To avoid economic losses and environmental pollution, damage detection of underwater pipelines must be carried out. In this paper, based on the histogram of oriented gradient (HOG) and support vector machine (SVM), a non-contact ultrasonic imaging method is proposed to detect the shedding damage of the metal underwater pipeline external anti-corrosion layer. Firstly, the principle of acoustic scattering characteristics for detecting the metal underwater pipelines is introduced. Following this, a HOG+SVM image-extracting algorithm is used to extract the pipeline area from the underwater ultrasonic image. According to the difference of mean gray value in the horizontal direction of the pipeline project area, the shedding damage parts are identified. Subsequently, taking the metal underwater pipelines with three layers of polyethylene outer anti-corrosive coatings as the detection object, an Autonomous Surface Vehicle (ASV) for underwater pipelines defect detection is developed to verify the detection effect of the method. Finally, the underwater ultrasonic image which used to detect the metal underwater pipeline shedding damage is obtained by acoustic sensor. The results show that the shedding damage can be detected by the proposed method. With the increase of shedding damage width, the effect of pipeline defect location detection is better.

Funder

the Guangdong Province Science & Technology project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Prediction of reliability of the corroded pipeline considering the randomness of corrosion damage and its stochastic growth;Oleksiy;Eng. Fail. Anal.,2016

2. State-of-the-art Advancement and Development Direction of Submarine Pipeline Inspection Technology;Jinlong;Pet. Mach.,2016

3. Analysis on the under deposit corrosion of air cooler tubes: Thermodynamic, numerical and experimental study

4. A passive acoustic based system to locate leak hole in underwater natural gas pipelines;Yigit;Digit. Signal Process.,2018

5. Numerical Simulation and Experimental Research on Mangentostrictive Guided Wave Testing on Marine Riser;Long,2013

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3