Numerical Modelling for Synthetic Fibre Mooring Lines Taking Elongation and Contraction into Account

Author:

Ćatipović Ivan,Alujević Neven,Rudan SmiljkoORCID,Slapničar VedranORCID

Abstract

Synthetic fibre mooring lines are used as an alternative to traditional steel wire ropes due to their higher strength to weight ratio. Benefits are also found in relative ease of handling, and therefore the marine industry has largely accepted this type of mooring line. By rules and regulations, the design of mooring lines should be based on a coupled dynamic analysis of a particular mooring system and moored vessel. This approach incorporates damping and inertial forces (i.e., hydrodynamic reactions) acting directly on the mooring lines due to their motion through the seawater. On the basis of the outer diameter of the synthetic fibre rope, the Morison equation gives estimations of the mooring line hydrodynamic reactions. In comparison to the traditional steel wire ropes, the synthetic mooring lines usually have relatively larger elongations and consequently larger reductions of the outer diameter. Furthermore, the lower diameter certainly leads to reduced values of damping and added mass (of mooring lines) that should be considered in the coupled model. Therefore, the aim of this study was to develop a new numerical model that includes diameter changes and axial deformations when estimating the hydrodynamic reactions. The development of the model is carried out with a nonlinear finite element method for mooring lines with the assumption of large three-dimensional motions. The obtained results show the effectiveness of the newly developed model as a more accurate approach in calculation of hydrodynamic reactions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3