Water Depth Variation Influence on the Mooring Line Design for FOWT within Shallow Water Region

Author:

Huang Wei-Hua,Yang Ray-YengORCID

Abstract

The objective of this paper was to present the modeling and optimization of mooring lines for floating offshore wind turbines (FOWT) located in various water depths from 50 m to 100 m in Taiwan western offshore areas. A semi-submersible floating wind turbine system is considered based on Offshore Code Comparison Collaborative Continuation (OC4) DeepCwind platform with the National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind turbine. The mooring lines proposed consist of a catenary mooring with studless chains. Three nominal sizes of the mooring chain links are taken into account with diameters of 95 mm, 115 mm and 135 mm. According to this configuration, a total of five mooring designs for different water depths (i.e., 50 m, 60 m, 70 m, 80 m, 100 m) are analyzed according to the rules and regulations of the two certification institutions, Det Norske Veritas (DNV) and American Petroleum Institute (API). Considering ultimate limit state (ULS), fatigue limit state (FLS) and maximum operating sea state (MOSS) based on a typhoon with a 50-year return period and current with a 10-year return period, 25-year design life, as well as 1-year return period, respectively, long-term predictions of breaking strength, fatigue and stability are performed. The software OrcaFlex version 10.3 d is used to simulate and design the mooring lines. The obtained results show that the shallow mooring design of 50 m water depth case presents the heaviest chains among the other water depths, increasing their mooring costs. On the other hand, the 100 m water design has much longer mooring lines, making this parameter the cost driving one. Thus, the minimum mooring cost range is from 60 m to 80 m water depth.

Funder

Ministry of Science and Technology, Taiwan.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference9 articles.

1. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

2. DNV-OS-E301: Position Mooring. Det Norske Veritashttps://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-10/OS-E301.pdf

3. API Recommended Practice 2SK, Recommended Practice for Design and Analysis of Stationkeeping Systems for Floating Structures,2005

4. Definition of a 5-MW Reference Wind Turbine for Offshore System Development;Jonkman,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3