Proposal of a New Method for Controlling the Thaw of Permafrost around the China–Russia Crude Oil Pipeline and a Preliminary Study of Its Ventilation Capacity

Author:

Cao Yapeng,Li GuoyuORCID,Wu GangORCID,Chen DunORCID,Gao KaiORCID,Tang Liyun,Jia HailiangORCID,Che Fuqiang

Abstract

The China–Russia crude oil pipeline (CRCOP) has been in operation for over ten years. Field observation results have shown that a thaw bulb has developed around the CRCOP which expands at a rate of more than 0.8 m∙a−1 in depth. In view of the deficits of existing measures in mitigating permafrost thaw, a new control method is proposed based on active cooling. According to the relationship between total pressure loss and the driving force of natural ventilation, the wind speed in a U-shaped air-ventilation pipe around the CRCOP is calculated. By analyzing the theoretical calculation and numerical analysis results, it is found that the influence of thermal pressure difference on the natural ventilation of the structure can be negligible, and the influences of resistance loss along the pipe and local resistance loss in the pipe are similarly negligible. Exhaust elbows greatly improve the ventilation performance of the U-shaped air-ventilated pipe. This study developed a novel structure around warm-oil pipelines in permafrost for mitigating thaw settlement along the CRCOP and other similar projects across the world.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3