Utilizing the Intrinsic Mode of Weakly Coupled Resonators for Temperature Compensation

Author:

Wang Kunfeng,Xiong Xingyin,Wang Zheng,Cai Pengcheng,Ma Liangbo,Zou XudongORCID

Abstract

Accelerometers based on outputting amplitude ratios in weakly coupled resonators (WCRs) are attractive because their parametric sensitivity is higher by two or three orders of magnitudes than those based on outputting frequency. However, the impact of temperature on the coupler is a key factor in accelerometer applications. This paper proposed a novel mode-localized WCR accelerometer with a temperature compensation mechanism, with sensitive elements incorporating a double-ended tuning fork (DETF) resonator, clamped–clamped (CC) resonator, and a micro-lever coupler. The DETF out-of-phase mode is utilized, which is only sensitive to temperature, to measure the temperature change of WCRs and complete the temperature compensation using the compensation algorithm. This proposed method has no time delay in measuring the temperature of sensitive elements and no temperature difference caused by the uneven temperature field. The parametric sensitivity in amplitude ratio (AR) to acceleration drifting with temperature was theoretically analyzed, and the novel device was designed and fabricated by a silicon-on-glass process. Both simulation and experiment results demonstrated that the coupling stiffness drifted with temperature, which resulted in the drifts of its sensitivity to acceleration and zero-bias stability. Using the intrinsic mode of WCRs, in terms of the DETF out-of-phase mode, as an in situ thermometer and carrying out the temperature compensation algorithm, the drift of zero bias could be suppressed from 102 mg to 4.5 mg (g is the gravity acceleration), and the drift of the parameter sensitivity in AR was suppressed from 0.74 AR/g to 0.02 AR/g with the temperature range from 330 K to 370 K and acceleration range from 0 g to 0.2 g.

Funder

Key Research Program of Frontier Science, CAS

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3