Microencapsulation of Bacillus velezensis Using Alginate-Gum Polymers Enriched with TiO2 and SiO2 Nanoparticles

Author:

Pour Mojde MoradiORCID,Riseh Roohallah Saberi,Ranjbar-Karimi Reza,Hassanisaadi MohadesehORCID,Rahdar AbbasORCID,Baino FrancescoORCID

Abstract

Bacillus bacteria are a group of plant growth stimulants that increase plant growth and resistance to plant pathogens by producing various metabolites. With their large surface area and small size, nanoparticles can be used in controlled-release formulations and increase the efficiency of the desired product. Encapsulation of biological agents in combination with nanoparticles can be an essential step in increasing the performance of these agents in adverse environmental conditions. In this study, which is the result of a collaboration between scientists from Italy and Iran, Bacillus velezensis was encapsulated in alginate combined with whey protein and zedo, mastic, and tragacanth gums in the presence of silica and titania nanoparticles to obtain two-layer and multilayer assemblies acting as novel, smart micro-encapsulation systems. The results of laboratory studies showed that the B. velezensis could produce protease, lipase, siderophore, auxin, and a dissolution of mineral phosphate. Scanning electron microscopy images (SEM) showed that the studied microcapsules were almost spherical. Moisture affinity, swelling, and efficiency of each microcapsule were examined. The results showed that the highest encapsulation efficiency (94.3%) was related to the multilayer formulation of alginate-whey protein-zedo. XRD and FTIR spectroscopy showed that the alginate, whey protein, and zedo were mixed properly and no incompatible composition occurred in the reaction. This study aimed to provide a suitable formulation of biofertilizers based on biodegradable compounds as an alternative to chemical fertilizers, which is low cost and very effective without harming humans and the environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3