Material Removal Mechanism in Photocatalytic−Assisted Jet Electrochemical Machining of SiCp/Al

Author:

Wang FengORCID,Zhou Jing,Wu Siyi,Kang Xiaoming,Gu Lin,Zhao Wansheng

Abstract

Silicon carbide particle reinforced aluminum matrix (SiCp/Al) composites are increasingly used in high−end industries because of their superior comprehensive material properties. However, their advanced properties also create severe challenges for traditional processing technologies. A new hybrid machining method named photocatalytic−assisted jet electrochemical machining (PAJECM) is proposed to improve the machining capability by synchronously removing the metal aluminum matrix and the SiC particles. Comparative experiments were carried out on whether photocatalysis was added. The results show that after photocatalytic−assisted jet electrochemical machining, the height of SiC particles’ extrusion on the surface is significantly reduced. Compared with jet electrochemical machining (JECM) without photocatalysis at the same processing voltage, the surface roughness value is reduced, and the processing quality is improved. In PAJECM, the aluminum matrix is removed by electrochemical anodic dissolution, while the SiC particles generate a SiO2 reaction layer through photocatalysis, and the TiO2 abrasive flow’s mechanical action repeatedly removes the reaction layer. The electrochemical polarization curves and energy diffraction spectroscopy elemental analysis confirmed the material removal mechanism of PAJECM. Based on analyzing the phenomenon of material removal in detail, a qualitative model of the PAJECM material removal mechanism is established. This study provides valuable insights into the material removal mechanism in photocatalytic and jet electrochemical machining composite processes.

Funder

National Natural Science Foundation of China

the NSFC Key Project for International Collaboration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3