Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems

Author:

Fath AlirezaORCID,Xia Tian,Li WeiORCID

Abstract

Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to ordinary robots. This review paper provides an overview of the recent advances in the application of piezoelectric materials in microrobots. The challenges of microrobots in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and control. In each section, innovative research ideas are presented to inspire researchers in their prospective microrobot designs according to specific applications. Novel mechanisms for the mobility of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-actuators require high-voltage electronics and onboard power supplies, we review ways of energy harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered movement of microrobots.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3