Experimental Study on Surface Integrity of Solar Cell Silicon Wafers Sliced by Electrochemical Multi-Wire Saw

Author:

Bao GuanpeiORCID,Huang Chen,Zhang Yajing,Yu Zhen,Wang Wei

Abstract

Electrochemical multi-wire sawing (EMWS) is a hybrid machining method based on a traditional multi-wire sawing (MWS) system. In this new method, a silicon ingot is connected to a positive electrode; the slicing wire is connected to a negative electrode. Material is removed by the interaction of mechanical grinding and an electrochemical reaction. In this paper, contrast experiments of EMWS and MWS were conducted based on industrialized equipment to verify the beneficial effects of the hybrid method. The experimental statistical results show that the composite processing method improved the processing qualification rate by 1.28%, and the Bow of silicon wafers was reduced by about 2.74 microns. Further testing on the surface of the silicon wafer after electrochemical action showed that obvious holes were present on the surface, and the surface hardness of the wafer decreased significantly. Therefore, the scratches on the surface of wafer sliced by EMWS were reduced; in addition, the thickness of the surface damage layer was reduced by about 9 microns. After standard texturing, the average reflectivity of the wafers sliced by EMWS was about 2–10% lower than that of the wafers sliced by MWS in the wavelength of 300–1100 nm. In this paper, the voltage parameter of the composite machining is set to 48 V; the amount of electrolyte added in each experiment is 2 L; and a good machining effect is obtained. In the future, the electric parameters and cutting fluid components will be further studied to improve the electrochemical effect.

Funder

National Natural Science Foundation of China

Natural Science Foundation in Higher Education of Anhui China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3