Evaluation of a High-Temperature Pre-Heating System Design for a Large-Scale Additive Manufacturing System

Author:

Ramulifho Rabelani Duncan,Gupta KapilORCID,Glaser Daniel

Abstract

Additive Manufacturing (AM) of titanium (Ti6Al4V) material using Selective Laser Melting (SLM) may generate significant residual stresses of a tensile nature, which can cause premature component failure. The Aeroswift platform is a large volume AM machine where a high-temperature substrate preheating system is used to mitigate high thermal gradients. The current machine platform is unable to achieve a target build-plate temperature of 600 °C. This study focuses on the analysis of the preheating system design to determine the cause of its inefficiency, and the experimental testing of key components such as the heater and insulation materials. A Finite Element Analysis (FEA) model shows the ceramic heater achieves a maximum temperature of 395 °C, while the substrates (build-plates) only attain 374 °C. Analysis showed that having several metal components in contact and inadequate insulation around the heater caused heat loss, resulting in the preheating system’s inefficiency. Additionally, experimental testing shows that the insulation material used was 44% efficient, and a simple insulated test setup was only able to obtain a maximum temperature of 548.8 °C on a 20 mm thick stainless steel 304 plate, which illustrated some of the challenges faced by the current pre-heating design. New design options have been developed and FEA analysis indicates that a reduction in heat loss through improved sub-component configurations can obtain 650 °C degrees above the substrate without changing the heating element power. The development and challenges associated with the large-scale preheating system for AM are discussed, giving an insight into improving its performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3