Fabrication of Ultra-Fine and Ultra-Long Copper Tube Electrodes by Ultrasonic High-Frequency Percussion

Author:

Zhang Xiajunyu,Zhao Yugang,Yu Hanlin,Li Zhihao,Zhao Chuang,Liu Guangxin,Cao Chen,Liu Qian,Zheng Zhilong,Zhao Dandan

Abstract

In this study, a new method of ultrasonic high-frequency percussion (UH-FP) is proposed. Ultra-fine and ultra-long copper tube electrodes cannot be fabricated by traditional processing methods, and the copper tube electrodes fabricated by UH-FP can be used in the process of rotary EDM for microfine holes. The UH-FP setup has been established based on an ultrasonic device, a workpiece chucking and rotation device, and a workpiece reciprocating motion device. In this work, by studying the principle of ultrasonic processing, the processing principle and mechanism of ultra-fine and ultra-long copper tube electrode preparation by ultrasonic high-frequency percussion is proposed. The effects of processing parameters (i.e., rotational speed, feed rate, working gap, percussion amplitude) on surface roughness are evaluated quantitatively. Experimental results show that the proposed method could complete the core leach of the core-containing copper tube electrodes after drawing, while improving surface quality. Some surface defects such as cracks, scratches and folds were completed removed, further improving the mechanical performance of processed parts. The surface roughness (Ra) of 0.091 μm was obtained from the initial 0.46 μm under the optimal processing parameters of 800 rpm tube rotational speed, 200 mm/min platform feed speed, 0.13 mm machining gap, 0.15 mm percussion amplitude, and 32 min machining time. The method shows potential for manufacturing copper tube electrodes for a wide range of industrial applications.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3