Abstract
Brain–machine interfaces (BMIs) have been applied as a pattern recognition system for neuromodulation and neurorehabilitation. Decoding brain signals (e.g., EEG) with high accuracy is a prerequisite to building a reliable and practical BMI. This study presents a deep convolutional neural network (CNN) for EEG-based motor decoding. Both upper-limb and lower-limb motor imagery were detected from this end-to-end learning with four datasets. An average classification accuracy of 93.36 ± 1.68% was yielded on the four datasets. We compared the proposed approach with two other models, i.e., multilayer perceptron and the state-of-the-art framework with common spatial patterns and support vector machine. We observed that the performance of the CNN-based framework was significantly better than the other two models. Feature visualization was further conducted to evaluate the discriminative channels employed for the decoding. We showed the feasibility of the proposed architecture to decode motor imagery from raw EEG data without manually designed features. With the advances in the fields of computer vision and speech recognition, deep learning can not only boost the EEG decoding performance but also help us gain more insight from the data, which may further broaden the knowledge of neuroscience for brain mapping.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献