Study on the CBN Wheel Wear Mechanism of Longitudinal-Torsional Ultrasonic-Assisted Grinding Applied to TC4 Titanium Alloy

Author:

Liu Junli,Liu Zhongpeng,Yan Yanyan,Wang Xiaoxu

Abstract

In this study, the CBN (cubic boron nitride) wheel wear model of TC4 titanium alloy in longitudinal-torsional ultrasonic-assisted grinding (LTUAG) was established to explore the grinding wheel wear pattern of TC4 titanium alloy in LTUAG and to improve the grinding efficiency of TC4 titanium alloy and the grinding wheel life. The establishment of the model is based on the grinding force model, the abrasive surface temperature model, the abrasive wear model, and the adhesion wear model of TC4 titanium alloy in LTUAG. The accuracy of the built model is verified by the wheel wear test of TC4 titanium alloy in LTUAG. Research has shown that the grinding force and grinding temperature in LTUAG increase with the increase of the grinding depth and workpiece feed rate and decrease with the increase of the longitudinal ultrasonic amplitude. It also shows that the grinding force gradually decreases with the increase of the grinding wheel speed, while the grinding temperature gradually increases with the increase of the grinding wheel speed. In addition, the use of LTUAG can significantly reduce the wear rate of the grinding wheel by 25.2%. It can also effectively reduce the grinding force and grinding temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3