Diffusion-Slip Boundary Conditions for Isothermal Flows in Micro- and Nano-Channels

Author:

Tomy Alwin MichaelORCID,Dadzie S. KokouORCID

Abstract

Continuum description of flows in micro- and nano-systems requires ad hoc addition of effects such as slip at walls, surface diffusion, Knudsen diffusion and others. While all these effects are derived from various phenomenological formulations, a sound theoretical ground unifying these effects and observations is still lacking. In this paper, adopting the definition and existence of various type of flow velocities beyond that of the standard mass velocity, we suggest derivation of model boundary conditions that may systematically justify various diffusion process occurring in micro- and nano-flows where the classical continuum model breaks down. Using these boundary conditions in conjunction with the classical continuum flow equations we present a unified derivation of various expressions of mass flow rates and flow profiles in micro- and nano-channels that fit experimental data and provide new insights into these flow profiles. The methodology is consistent with recasting the Navier–Stokes equations and appears justified for both gas and liquid flows. We conclude that these diffusion type of boundary conditions may be more appropriate to use in simulating flows in micro- and nano-systems and may also be adapted as boundary condition models in other interfacial flow modelling.

Funder

Leverhulme Trust Research Project Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3