Analysis and Optimization of a Microgripper Driven by Linear Ultrasonic Motors

Author:

Geng RanranORCID,Yao Zhiyuan,Wang Yuqi,Huang Jiacai,Liu Hanzhong

Abstract

This paper presents the vibration response analysis and optimal structural design of a microgripper driven by linear ultrasonic motors (LUMs) dedicated to improving end-point positioning accuracy. Based on structural vibration theory, a parametric vibration response model of the microgripper finger was established, and the relative sensitivities of the structural and material parameters that affect the vibration amplitude of the fingertip were calculated within the structural and material constraints. Then, according to the sensitivity calculation results, a multidimensional constrained nonlinear optimization model was constructed to suppress the vibration of the end-effector. The improved internal penalty function method combined with Newton iteration was adopted to obtain the optimal structural parameters. Finally, the vibration experimental results show that the vibration amplitude of the initial microgripper fingertip is 16.31 μm, and the value measured after optimization was 2.49 μm, exhibiting a reduction of 84.7%. Therefore, the proposed optimal design method can effectively restrain the vibration of the microgripper end-effector and improve manipulation stability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3