Low-Rank Methods for Solving Discrete-Time Projected Lyapunov Equations

Author:

Lin Yiqin1ORCID

Affiliation:

1. School of Science, Hunan University of Science and Engineering, Yongzhou 425199, China

Abstract

In this paper, we consider the numerical solution of large-scale discrete-time projected Lyapunov equations. We provide some reasonable extensions of the most frequently used low-rank iterative methods for linear matrix equations, such as the low-rank Smith method and the low-rank alternating-direction implicit (ADI) method. We also consider how to reduce complex arithmetic operations and storage when shift parameters are complex and propose a partially real version of the low-rank ADI method. Through two standard numerical examples from discrete-time descriptor systems, we will show that the proposed low-rank alternating-direction implicit method is efficient.

Funder

Natural Science Foundation of Hunan Province

Academic Leader Training Plan of Hunan Province

Applied Characteristic Discipline at Hunan University of Science and Engineering

Publisher

MDPI AG

Reference49 articles.

1. Gantmacher, F. (1959). Theory of Matrices, Chelsea.

2. Stykel, T. (2002). Analysis and Numerical Solution of Generalized Lyapunov Equations. [Ph.D. Thesis, Technische Universität Berlin].

3. Demmel, J.W. (1997). Applied Numerical Linear Algebra, SIAM.

4. Gajič, Z., and Qureshi, M.T.J. (2008). Lyapunov Matrix Equation in System Stability and Control, Dover Civil and Mechanical Engineering.

5. Ionescu, V., Oara, C., and Weiss, M. (1999). Generalized Riccati Theroy and Robust Control: A Popov Function Approach, John Wiley & Sons.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3