U-Net-Based Learning Using Enhanced Lane Detection with Directional Lane Attention Maps for Various Driving Environments

Author:

Lee Seung-Hwan1,Lee Sung-Hak1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, 80 Deahakro, Buk-Gu, Daegu 41566, Republic of Korea

Abstract

Recent advancements in optical and electronic sensor technologies, coupled with the proliferation of computing devices (such as GPUs), have enabled real-time autonomous driving systems to become a reality. Hence, research in algorithmic advancements for advanced driver assistance systems (ADASs) is rapidly expanding, with a primary focus on enhancing robust lane detection capabilities to ensure safe navigation. Given the widespread adoption of cameras on the market, lane detection relies heavily on image data. Recently, CNN-based methods have attracted attention due to their effective performance in lane detection tasks. However, with the expansion of the global market, the endeavor to achieve reliable lane detection has encountered challenges presented by diverse environmental conditions and road scenarios. This paper presents an approach that focuses on detecting lanes in road areas traversed by vehicles equipped with cameras. In the proposed method, a U-Net based framework is employed for training, and additional lane-related information is integrated into a four-channel input data format that considers lane characteristics. The fourth channel serves as the edge attention map (E-attention map), helping the modules achieve more specialized learning regarding the lane. Additionally, the proposition of an approach to assign weights to the loss function during training enhances the stability and speed of the learning process, enabling robust lane detection. Through ablation experiments, the optimization of each parameter and the efficiency of the proposed method are demonstrated. Also, the comparative analysis with existing CNN-based lane detection algorithms shows that the proposed training method demonstrates superior performance.

Funder

Ministry of Education

Publisher

MDPI AG

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3