The Gauge Equation in Statistical Manifolds: An Approach through Spectral Sequences

Author:

Boyom Michel Nguiffo1,Puechmorel Stephane2

Affiliation:

1. IMAG CNRS, University of Montpellier, 499-554 Rue du Tuel, 34090 Montpellier, France

2. Laboratoire ENAC, University of Toulouse, 7 Avenue Edouard Belin, 31055 Toulouse, France

Abstract

The gauge equation is a generalization of the conjugacy relation for the Koszul connection to bundle morphisms that are not isomorphisms. The existence of nontrivial solution to this equation, especially when duality is imposed upon related connections, provides important information about the geometry of the manifolds under consideration. In this article, we use the gauge equation to introduce spectral sequences that are further specialized to Hessian structures.

Publisher

MDPI AG

Reference20 articles.

1. Homologie et cohomologie des algèbres de Lie;Koszul;Bull. Soc. Math. Fr.,1950

2. Bai, C. (2021). Algebra and Applications 1, Wiley. Chapter 7.

3. Amari, S. (2016). Information Geometry and Its Applications, Applied Mathematical Sciences; Springer.

4. Husemöller, D. (2013). Fibre Bundles, Springer. Graduate Texts in Mathematics.

5. Boyom, M.N. (2016). Foliations-Webs-Hessian Geometry-Information Geometry-Entropy and Cohomology. Entropy, 18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3