A Sustainable Supply Chain Model with Low Carbon Emissions for Deteriorating Imperfect-Quality Items under Learning Fuzzy Theory

Author:

Alsaedi Basim S. O.1ORCID,Ahelali Marwan H.1ORCID

Affiliation:

1. Department of Statistics, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

In this paper, we develop a two-level supply chain model with low carbon emissions for defective deteriorating items under learning in fuzzy environment by using the double inspection process. Carbon emissions are a major issue for the environment and human life when they come from many sources like different kinds of factories, firms, and industries. The burning of diesel and petrol during the supply of items through transportation is also responsible for carbon emissions. When any company, firm, or industry supplies their items through a supply chain by using of transportation in the regular mode, then a lot of carbon units are emitted from the burning of petrol and diesel, etc., which affects the supply chain. Carbon emissions can be controlled by using different kinds of policies issued by the government of a country, and lots of companies have implemented these policies to control carbon emissions. When a seller delivers a demanded lot size to the buyer, as per demand, and the lot size has some defective items, as per consideration, the demand rate is uncertain in nature. The buyer inspects the received whole lot and divides it into two categories of defective and no defective deteriorating items, as well as immediately selling at different price. The fuzzy concept nullifies the uncertain nature of the demand rate. This paper covers two models, assuming two conditions of quality screening under learning in fuzzy environment: (i) the buyer shows the quality screening and (ii) the quality inspection becomes the seller’s responsibility. The carbon footprint from the transporting and warehousing the deteriorating items is also assumed. The aim of this study is to minimize the whole inventory cost for supply chains with respect to lot size and the number of orders per production cycle. Jointly optimizing the delivery lot size and number of orders per production cycle will minimize the whole fuzzy inventory cost for the supply chain and also reduce the carbon emissions. We take two numerical approaches with authentic data (from the literature reviews) for the justification of the proposed model 1 and model 2. Sensitivity observations, managerial insights, applications of these proposed models, and future scope are also included in this paper, which is more beneficial for firms, the industrial sector, and especially for online markets. The impact of the most effective parameters, like learning effect, fuzzy parameter, carbon emissions parameter, and inventory cost are shown in this study and had a positive effect on the total inventory cost for the supply chain.

Publisher

MDPI AG

Reference70 articles.

1. The joint economic lot size problem: A review;Glock;Int. J. Prod. Econ.,2012

2. Antecedents of low carbon emissions supply chains;Luo;Int. J. Clim. Chang. Strateg. Manag.,2017

3. Low carbon supply chain: A state-of-the-art literature review;Das;J. Manuf. Technol. Manag.,2018

4. Economic order quantity models for items with imperfect quality and emission considerations;Kazemi;Int. J. Syst. Sci. Oper. Logist.,2018

5. Sarkar, B., Ahmed, W., Choi, S.B., and Tayyab, M. (2018). Sustainable inventory management for environmental impact through partial backordering and multi-trade-credit period. Sustainability, 10.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decision of a trade credit policy in a supply chain model of growing items under linguistic fuzzy term set;International Journal of Management Science and Engineering Management;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3