Fuzzy-Based Road Accident Risk Assessment

Author:

Mogyorósi Péter1ORCID,Szénási Sándor2ORCID,Laufer Edit3ORCID

Affiliation:

1. Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, H-1034 Budapest, Hungary

2. John von Neumann Faculty of Informatics, Óbuda University, H-1034 Budapest, Hungary

3. Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, H-1034 Budapest, Hungary

Abstract

It is necessary to extensively investigate the causes of road accidents with the utmost precision to harness future technological advancements, such as autonomous driving and intelligent accident prevention systems. Nevertheless, since most accidents are attributed to simple human errors, unraveling the complex root-cause factors poses a considerable challenge. This is where fuzzy logic can offer a potential solution: it is essential to understand even seemingly straightforward errors, such as speeding, to identify external factors that could play a pivotal role in future accident prevention. A more in-depth examination and comprehension of elements like road curvature, slope, and their correlation with accidents are necessary. Additionally, it is crucial to explore how the frequency of accidents on specific road segments varies under diverse weather conditions. This article analyzes which curves can be considered more dangerous and the factors that render them risky. The fuzzy model presented in this article is primarily capable of estimating the risk of a given road segment based on its curvature characteristics. The model results presented in the article indicate that sections of the road can become more risky due to multiple curves and curves with a radius of less than 80 m. The model assesses risk based on the physical characteristics of road segments, primarily the curvature radius, while, typically, other road risk assessment models rely on traffic volume and accident counts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3