Communication-Efficient Zeroth-Order Adaptive Optimization for Federated Learning

Author:

Xie Ping1ORCID,Gao Xiangrui1,Li Fan1,Xing Ling1,Zhang Yu1,Sun Hanxiao1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Federated learning has become a prevalent distributed training paradigm, in which local devices collaboratively train learning models without exchanging local data. One of the most dominant frameworks of federated learning (FL) is FedAvg, since it is efficient and simple to implement; here, the first-order information is generally utilized to train the parameters of learning models. In practice, however, the gradient information may be unavailable or infeasible in some applications, such as federated black-box optimization problems. To solve the issue, we propose an innovative zeroth-order adaptive federated learning algorithm without using the gradient information, referred to as ZO-AdaFL, which integrates the zeroth-order optimization algorithm into the adaptive gradient method. Moreover, we also rigorously analyze the convergence behavior of ZO-AdaFL in a non-convex setting, i.e., where ZO-AdaFL achieves convergence to a region close to a stationary point at a speed of O(1/T) (T represents the total iteration number). Finally, to verify the performance of ZO-AdaFL, simulation experiments are performed using the MNIST and FMNIST datasets. Our experimental findings demonstrate that ZO-AdaFL outperforms other state-of-the-art zeroth-order FL approaches in terms of both effectiveness and efficiency.

Funder

National Natural Science Foundation of China

Henan Province Science Fund For Distinguished Young Scholars

Program For Innovative Research Team In University of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3