Norm-Resolvent Convergence for Neumann Laplacians on Manifold Thinning to Graphs

Author:

Cherednichenko Kirill D.1ORCID,Ershova Yulia Yu.2,Kiselev Alexander V.1ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

2. Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

Abstract

Norm-resolvent convergence with an order-sharp error estimate is established for Neumann Laplacians on thin domains in Rd, d≥2, converging to metric graphs in the limit of vanishing thickness parameter in the “resonant” case. The vertex matching conditions of the limiting quantum graph are revealed as being closely related to those of the δ′ type.

Funder

EPSRC Grant

IIMAS–UNAM

Publisher

MDPI AG

Reference68 articles.

1. Post, O. (2012). Spectral Analysis on Graph-Like Spaces, Springer. Lecture Notes in Mathematics 2039.

2. Convergence of spectra of graph-like thin manifolds;Exner;J. Geom. Phys.,2005

3. Convergence of spectra of mesoscopic systems collapsing onto a graph;Kuchment;J. Math. Anal. Appl.,2001

4. Asymptotics of spectra of Neumann Laplacians in thin domains;Kuchment;Contemp. Math.,2003

5. Berkolaiko, G., and Kuchment, P. (2012). Mathematical Surveys and Monographs, American Mathematical Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3