Affiliation:
1. School of Mathematics, Wuyi University, Jiangmen 529000, China
Abstract
Letting f be a transcendental meromorphic function, we consider the value distribution of the differential polynomials φfl(f(k))n−a, where φ(≢0) is a small function of f, l(≥2), n(≥1), k(≥1) are integers and a is a non-zero constant, and obtain an important inequality concerning the reduced counting function of φfl(f(k))n−a. Our results improve and generalize the results obtained by Xu and Ye, Karmakar and Sahoo, Chakraborty et.al, and Chen and Huang.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong
Reference40 articles.
1. Hayman, W. (1964). Meromorphic Functions, Clarendon Press.
2. Yang, C.C., and Yi, H.X. (2003). Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group.
3. Picard values of meromorphic functions and their derivatives;Hayman;Ann. Math.,1959
4. Hayman, W. (1967). Researcher Problems in Function Theory, The Athlone Press University of London.
5. Über ein Problem von Hayman;Mues;Math. Z.,1979