Instance Segmentation of Sparse Point Clouds with Spatio-Temporal Coding for Autonomous Robot

Author:

Liu Na1,Yuan Ye1,Zhang Sai2,Wu Guodong2,Leng Jie12,Wan Lihong2

Affiliation:

1. Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Origin Dynamics Intelligent Robot Co., Ltd., Zhengzhou 450000, China

Abstract

In the study of Simultaneous Localization and Mapping (SLAM), the existence of dynamic obstacles will have a great impact on it, and when there are many dynamic obstacles, it will lead to great challenges in mapping. Therefore, segmenting dynamic objects in the environment is particularly important. The common data format in the field of autonomous robots is point clouds. How to use point clouds to segment dynamic objects is the focus of this study. The existing point clouds instance segmentation methods are mostly based on dense point clouds. In our application scenario, we use 16-line LiDAR (sparse point clouds) and propose a sparse point clouds instance segmentation method based on spatio-temporal encoding and decoding for autonomous robots in dynamic environments. Compared with other point clouds instance segmentation methods, the proposed algorithm has significantly improved average percision and average recall on instance segmentation of our point clouds dataset. In addition, the annotation of point clouds is time-consuming and laborious, and the existing dataset for point clouds instance segmentation is also very limited. Thus, we propose an autonomous point clouds annotation algorithm that integrates object tracking, segmentation, and point clouds to 2D mapping methods, the resulting data can then be used for training robust model.

Funder

National key Research & Development plan of Ministry of Science and Technology of China

Publisher

MDPI AG

Reference36 articles.

1. Tixiao, S., Brendan, E., Drew, M., Wei, W., Carlo, R., and Daniela, R. (2020, January 25–29). LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, LA, USA.

2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.D., and Leonard, J.J. (2016). Simultaneous localization and mapping: Present, future, and the robust-perception age. arXiv.

3. Kim, G., and Kim, A. (2020, January 25–29). Remove, then Revert: Static point clouds Map Construction using Multiresolution Range Images. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, LA, USA.

4. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M. (2020, January 29). Deep learning for 3D point clouds: A survey. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Dubai, United Arab Emirates.

5. Lahoud, J., Ghanem, B., Pollefeys, M., and Oswald, M.R. (November, January 27). 3D instance segmentation via multi-task metric learning. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3