Detection of Water Changes in Plant Stems In Situ by the Primary Echo of Ultrasound RF with an Improved AIC Algorithm

Author:

Lv Danju,Zi Jiali,Gao Mingyuan,Xi Rui,Huang Xin

Abstract

The detection of water changes in plant stems by non-destructive online methods has become a hot spot in studying the physiological activity of plant water. In this paper, the ultrasonic radio-frequency echo (RFID) technique was used to detect water changes in stems. An algorithm (improved hybrid differential Akaike’s Information Criterion (AIC)) was proposed to automatically compute the position of the primary ultrasonic echo of stems, which is the key parameter of water changes in stems. This method overcame the inaccurate location of the primary echo, which was caused by the anisotropic ultrasound propagation and heterogeneous stems. First of all, the improved algorithm was analyzed and its accuracy was verified by a set of simulated signals. Then, a set of cutting samples from stems were taken for ultrasonic detection in the process of water absorption. The correlation between the moisture content of stems and ultrasonic velocities was computed with the algorithm. It was found that the average correlation coefficient of the two parameters reached about 0.98. Finally, living sunflowers with different soil moistures were subjected to ultrasonic detection from 9:00 to 18:00 in situ. The results showed that the soil moisture and the primary ultrasonic echo position had a positive correlation, especially from 12:00 to 18:00; the average coefficient was 0.92. Meanwhile, our results showed that the ultrasonic detection of sunflower stems with different soil moistures was significantly distinct. Therefore, the improved AIC algorithm provided a method to effectively compute the primary echo position of limbs to help detect water changes in stems in situ.

Funder

National Natural Science Foundation of China

Kunming Forestry Information Engineering Technology Research Center

Major Special Projects in Yunnan Province

Major scientific and technological projects in Yunnan Province

Education Foundation of Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3