Electrochemical DNA Biosensors with Dual-Signal Amplification Strategy for Highly Sensitive HPV 16 Detection

Author:

Yang Yuxing1,Liao Yazhen1,Qing Yang1,Li Haiyu1,Du Jie1ORCID

Affiliation:

1. College of Materials Science and Engineering, Hainan University, Haikou 570228, China

Abstract

Cervical cancer is an important topic in the study of global health issues, ranking fourth among women’s cancer cases in the world. It is one of the nine major cancers that China is focusing on preventing and treating, and it is the only cancer that can be prevented through vaccination. Systematic and effective screening for human papilloma (HPV) infection, which is closely linked to the development of cervical cancer, can reduce cervical cancer incidence and mortality. In this paper, an electrochemical sensor was designed to detect HPV 16 using dual-signal amplification. An APTES-modified glassy carbon electrode was used for improved stability. Gold nanoparticles and a chain amplification reaction were combined for signal amplification. The limit of detection (LOD) of this electrochemical sensor was 1.731 × 10−16 mol/L, and the linear response of the target detector range was from 1.0 × 10−13 mol/L to 1.0 × 10−5 mol/L (R2 = 0.99232). The test of serum sample recovery showed that it has good anti-interference, and the performance of all aspects was improved to different degrees compared with the previous research from the team. The designed sensor is centered around the principles of low cost, high sensitivity and stability, which provides new ideas for the future development of cervical cancer prevention and electrochemical biosensors.

Funder

Hainan Province Science and Technology Special Fund

National Natural Science Foundation of China

Graduate Students Innovation Research Project of Hainan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3