The Use of Terrestrial and Maritime Autonomous Vehicles in Nonintrusive Object Inspection

Author:

Mamchur Dmytro,Peksa JanisORCID,Kolodinskis Antons,Zigunovs Maksims

Abstract

Traditional nonintrusive object inspection methods are complex or extremely expensive to apply in certain cases, such as inspection of enormous objects, underwater or maritime inspection, an unobtrusive inspection of a crowded place, etc. With the latest advances in robotics, autonomous self-driving vehicles could be applied for this task. The present study is devoted to a review of the existing and novel technologies and methods of using autonomous self-driving vehicles for nonintrusive object inspection. Both terrestrial and maritime self-driving vehicles, their typical construction, sets of sensors, and software algorithms used for implementing self-driving motion were analyzed. The standard types of sensors used for nonintrusive object inspection in security checks at the control points, which could be successfully implemented at self-driving vehicles, along with typical areas of implementation of such vehicles, were reviewed, analyzed, and classified.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfer Learning for Handover Prediction in 5G Maritime Vehicular Networks;2024 19th International Symposium on Wireless Communication Systems (ISWCS);2024-07-14

2. A Review on the State of the Art in Copter Drones and Flight Control Systems;Sensors;2024-05-23

3. Comparison of Vertical and Horizontal Shading of a Photovoltaic Panel;2023 IEEE 6th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE);2023-10-19

4. Modelling Photovoltaic Cells under Variable Conditions of Temperature and Solar Insolation Intensity;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

5. Comparison of Photovoltaic System Performance under Different Conditions;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3