Effect of High-Speed Sintering on the Optical Properties, Microstructure, and Phase Distribution of Multilayered Zirconia Stabilized with 5 mol% Yttria

Author:

Cho Mi-Hyang1,Seol Hyo-Joung2ORCID

Affiliation:

1. Department of Dental Lab, Wonkwang Health Science University, Iksan-si 54538, Republic of Korea

2. Department of Dental Materials, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea

Abstract

As dental 5 mol% yttria-stabilized (5Y-) zirconia demand high esthetics, it is necessary to clarify how the optical properties are affected by high-speed sintering, which is not yet fully understood. Our study aimed to investigate the effect of high-speed sintering on the translucency and opalescence parameters (TP and OP, respectively), as well as their related microstructure and phase distribution, using two types of multilayered 5Y-zirconia. Multilayered 5Y-zirconia (Cercon xt ML, Lava Esthetic) were cut layer-by-layer, followed by conventional and high-speed sintering. The TP and OP values were subsequently obtained using a spectrophotometer, and field emission scanning electron microscopy images were used to analyze the average grain size. The phase fractions were analyzed using X-ray diffraction. Regardless of the zirconia type, the TP was slightly lowered by high-speed sintering in all the layers except the dentin layer (DL) for Lava Esthetic (p < 0.05). The OP decreased by high-speed sintering in the DL for Cercon xt ML and in all the layers for Lava Esthetic (p < 0.05). The decrease in translucency after high-speed sintering was attributed to a decrease in the yttria-rich t’-phase with low tetragonality, along with an increase in the yttria-lean t-phase with high tetragonality.

Funder

Wonkwang Health Science University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3