Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature

Author:

Wang Kun1,Hu Feng12,Zhou Wen1,Yershov Serhii1,Li Li2,Wu Kaiming13

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China

2. Zhejiang Tsingshan Iron & Steel Co., Ltd., Qingtian 323903, China

3. Metals Valley & Band (Foshan) Metallic Composite Co., Ltd., Foshan 528000, China

Abstract

The tensile properties and work-hardening behavior of austempered bainitic steels below martensite start temperature (Ms) were investigated and compared with those of bainitic steel austempered above Ms. The results show that the tensile strength and yield strength increased from 1096 MPa and 734 MPa to 1203 MPa and 951 MPa, respectively, when the austempering temperature was decreased from 400 °C to 300 °C. However, the total elongation decreased from 23% to 16%. The martensite-retained austenite blocks and bainitic ferrite laths are significantly refined. With a decrease in the austempering temperature, the volume fraction of retained austenite decreased from 15.4 vol% to 6.2 vol%. The carbon content in retained austenite increased from 1.12 wt% to 1.69 wt%. All tensile specimens exhibited three stages of deformation in the differential Crussard−Jaoul (C−J) models. The difference in ductility is mainly attributed to the transformation of the retained austenite blocks into strain-induced martensite during deformation. The initial content of retained austenite is the main factor affecting the ductility of bainitic steels. Therefore, the work-hardening ability of austempered bainitic steel above Ms is higher than that of bainitic steel below Ms.

Funder

the National Natural Science Foundation of China

Leading Innovation and Entrepreneurship Team in Zhejiang Province

Science and Technology Program of Guangxi Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3