Enhanced Coarse-Grained WC-Co(Ce) Cemented Carbide Prepared through Co-Precipitation

Author:

Min Fanlu12,Wang Shiyu2,Yu Songbai3,Yang Hao4,Yao Zhanhu5,Ni Jianzhong6,Zhang Jianfeng3

Affiliation:

1. Key Laboratory of Geomechanics and Embankment Engineering, Hohai University, Ministry of Education, Nanjing 210024, China

2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China

3. College of Mechanics and Materials, Hohai University, Nanjing 211100, China

4. State Grid Lu’an Electric Power Supply Company, Lu’an 237000, China

5. CCCC Tunnel Engineering Company Limited, Beijing 100102, China

6. Hangzhou Fuyang City Construction and Investment Group Company Limited, Hangzhou 311400, China

Abstract

The exploration of coarse-grained WC cemented carbide has become a research hotspot for its application in the fields of rock cutting and mining; a key issue is how to achieve uniform dispersion and densification of the sintered phase, as well as how to obtain better mechanical properties. In this paper, chemical co-precipitation, combined with hydrogen reduction, was adopted. CoCl2·6H2O and CeCl3 were used as precursors to coat Co nanoparticles on the surface of WC powder while introducing different contents of cerium; the samples were then sintered and densified to obtain WC-Co(Ce) hard alloy materials. On the surface of the obtained WC particles, the distribution of Co(Ce) nanoparticles was uniform and dense, and the average particle size after sintering was 4.2 μm, which lies in the coarse-grained range. The addition of cerium elements significantly improves the flexural strength and impact toughness; when the cerium content was 0.5% and 0.6%, they increased to 2487 MPa and 36.1 kJ/m2, respectively. The addition of Co(Ce) through the co-precipitation method could achieve a uniform coating of the Co phase, along with the uniform dispersion and densification of the sintered phase, giving the WC-Co(Ce) cemented carbide excellent properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3