PickT: A Decision-Making Tool for the Optimal Pickling Process Operation

Author:

Crișan Claudia Alice1ORCID,Timiș Elisabeta Cristina2ORCID,Vermeșan Horațiu1ORCID

Affiliation:

1. Department of Environmental Engineering and Sustainable Development Entrepreneurship, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania

2. Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Computer Aided Process Engineering Research Centre, Babeș Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania

Abstract

This research approaches knowledge gaps related to the pickling process dynamic modelling (the lack of predictability and simplicity of existing models) and answers the practical need for a software tool to facilitate the optimum process operation (by delivering estimations of the optimum corrosion inhibitor addition, optimum pickling bath lifetime, corrosion rate dynamic evolution, and material mass loss). A decision-making tool, PickT, has been developed and verified with the help of measurements from two different pickling experiments, both involving steel in hydrochloric acid. The first round of experiments lasted 336 h (each pickling batch duration was 24 h) and Cetilpyridinium bromide (CPB) was the corrosion inhibitor in additions from 8% to 12%. The collected dataset served for the tool development and first verification. The second round of experiments lasted 10 h (each batch duration was 2 h) and involved metformin hydrochloride (MET) in additions between 3.3 g/L and 10 g/L. This dataset served to test the transferability of PickT to other operating conditions in terms of corrosion inhibitor type, additions, batch duration and pickling bath lifetime magnitude. In both cases PickT results are in accordance with experimental findings. The tool advantages consist of the straightforward applicability, the low amount of field data required for reliable forecasts and the accessibility for untrained professionals from the industry.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3