Laser Shock Peening Improves the Corrosion Resistance of an E690 High-Strength Steel Cladding Layer

Author:

Qin Jiaxin1,Cao Yupeng12,Shi Weidong1,Wang Zhengang2,Qiu Ming2

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong 226019, China

2. Nantong COSCO Shipping Engineering Co., Ltd., Nantong 226006, China

Abstract

To investigate the effect of laser shock peening parameters on the corrosion resistance of an E690 high-strength steel cladding layer, NVE690 high-strength steel powder was selected for testing at various power densities of pulse lasers. The surface roughness and residual stress of the treated samples were measured, and the microstructure morphology of the sample surface was observed. The electrochemical corrosion tests were conducted with an electrochemical workstation to measure the electrometer polarization, obtain the impedance curve, and observe the electrochemical corrosion. As the laser power density increased, the surface grains of the E690 high-strength steel cladding layer continued to refine until nanocrystals formed, and the residual compressive stress on the surface increased. The residual compressive stress on the surface rendered the passivation film stable and dense; furthermore, the refinement of surface grains inhibited the initiation and propagation of microcracks. The positive shift of the corrosion potential increased from −1.004 to −0.771 V, the corrosion current density decreased from 114.5 to 5.41 μA/cm2, the radius of the impedance spectrum curve increased, and the peeling pits, as well as corrosion micropores on the surface, gradually became no longer evident after electrochemical corrosion. After laser shock treatment, the corrosion resistance of the cladding layer sample was substantially improved.

Funder

National Key Research and Development Project of China

Nantong City livelihood project

Postdoctoral Science Foundation of Jiangsu Province

Ministry of Industry and Information Technology High tech Ship Research Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser surface treatment of steels;Reference Module in Materials Science and Materials Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3