Origin and Evolution of Cracks in the Glaze Surface of a Ceramic during the Cooling Process

Author:

Chen Tiantian1,Gong Bin2ORCID,Tang Chun’an3

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. Department of Civil and Environmental Engineering, Brunel University London, London UB8 3PH, UK

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Because of the significant difference between the thermal expansion coefficients of ceramic blank and glaze, the glaze typically undergoes more pronounced shrinkage than the blank during ceramic cooling, which results in high stress concentrations and cracking. In this study, the mechanical mechanism of glaze cracking is studied, based on the statistical strength theory, damage mechanics, and continuum mechanics. Furthermore, the influence of the glaze layer thickness, heat transfer coefficient, expansion coefficient, and temperature difference on the creation and propagation of inner microcracks is systematically investigated, and the final discrete fracture network of ceramics is discussed at the specific crack saturation state. The results show that (1) a higher heat transfer coefficient will lead to a more uniform distribution of the surface temperature and a faster cooling process of the ceramics, reducing the number of microcracks when the ambient temperature is reached; (2) the thinner glaze layer is less prone to cracking when its thickness is smaller than that of the blank. However, when the thickness of the glaze layer is similar to that of the blank, the increased thickness of the glaze layer will increase the number of cracks on its surface; and (3) when the expansion coefficient of the glaze layer is smaller than that of the blank, cracks will not occur inside the glaze layer. However, as the coefficient of the thermal expansion of the glaze layer continuously rises, the number of cracks on its surface will first increase and then decrease.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3