Effects of Oxygen Flow during Fabrication by Magnetron Sputtering on Structure and Performance of Zr-Doped HfO2 Thin Films

Author:

Xi Yingxue1ORCID,Liu Lei1,Zhao Jiwu1ORCID,Qin Xinhui1,Zhang Jin1ORCID,Zhang Changming1,Liu Weiguo1ORCID

Affiliation:

1. School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

Oxygen defects in Hafnium Oxide (HfO2)-based ferroelectric thin films not only are related to the cause of ferroelectricity but also affect the ferroelectric properties of the thin films. This paper, therefore, focuses on the fabrication of Zr:HfO2 thin films by RF (Radio Frequency) magnetron sputtering with Zr-doped HfO2 as the target and examines how oxygen flow impacts the oxygen vacancies and electrical properties thereof. Additionally, TiN thin-film electrodes were prepared by direct current (DC) magnetron reactive sputtering using nitrogen as the reaction gas, the influences of the substrate temperature on the film deposition rate and crystal phase structure were investigated, and the resultant thin-film electrodes with the lowest resistivity were obtained. Furthermore, the ferroelectric hysteresis loop and leakage current density of metal–insulator–metal (MIM) ferroelectric capacitors formed by annealing the 30 nm thick deposited Zr:HfO2 sandwiched between the top and bottom TiN electrodes were measured. The results demonstrate that varying oxygen flow has a considerable effect on oxygen vacancies and the Zr doping concentration of deposited Zr:HfO2 ferroelectric thin films. When the oxygen flow is set to 40 sccm (standard cubic centimeters per minute) and an external electric field strength of 2 mV/cm is applied, the remnant polarization reaches 18 μC/cm2, with a decrease in the leakage current density of 105–6 orders of magnitude.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3