He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys

Author:

Zhang Huanzhi1,Wang Qianqian1,Li Chunhui1,Zhu Zhenbo2ORCID,Huang Hefei2ORCID,Lu Yiping1

Affiliation:

1. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China

Abstract

High-entropy alloys (HEAs) have shown promising potential applications in advanced reactors due to the outstanding mechanical properties and irradiation tolerance at elevated temperatures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared to explore high-performance HEAs under irradiation. The microstructures and mechanical properties of the Ti2ZrHfxV0.5Ta0.2 HEAs before and after irradiation were investigated. The results showed that the unirradiated Ti2ZrHfxV0.5Ta0.2 HEAs displayed a single-phase BCC structure. The yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs increased gradually with the increase of Hf content without decreasing the plasticity at room and elevated temperatures. After irradiation, no obvious radiation-induced segregations or precipitations were found in the transmission electron microscope results of the representative Ti2ZrHfV0.5Ta0.2 HEA. The size and number density of the He bubbles in the Ti2ZrHfV0.5Ta0.2 HEA increased with the improvement of fluence at 1023 K. At the fluences of 1 × 1016 and 3 × 1016 ions/cm2, the irradiation hardening fractions of the Ti2ZrHfV0.5Ta0.2 HEA were 17.7% and 34.1%, respectively, which were lower than those of most reported conventional low-activation materials at similar He ion irradiation fluences. The Ti2ZrHfV0.5Ta0.2 HEA showed good comprehensive mechanical properties, structural stability, and irradiation hardening resistance at elevated temperatures, making it a promising structural material candidate for advanced nuclear energy systems.

Funder

National Key Research and Development Program of China

Liao Ning Revitalization Talents Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3