The Effect of CoAl2O4 as a Nucleating Agent and Pouring Temperature on the Microstructure and Properties of Inconel 713C® Nickel-Based Superalloy Castings

Author:

Cygan Rafał1,Rakoczy Łukasz2ORCID

Affiliation:

1. Consolidated Precision Products Corporation, Investment Casting Division, Hetmańska 120, 35-078 Rzeszow, Poland

2. Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland

Abstract

In this work, three melt-pouring temperatures (1450 °C, 1480 °C, 1520 °C) and CoAl2O4 inoculant contents in the shell mold’s primary coating (0 wt%, 5 wt%, and 10 wt%) were selected to study microstructural and mechanical property changes of the Inconel 713C® nickel-based superalloy. The castings’ phase transformation temperatures, phase constitution, microstructure, and mechanical properties at room and elevated temperatures were investigated via thermodynamical simulations, differential thermal analysis, light and scanning electron microscopy, energy-dispersive X-ray spectroscopy, and tensile and stress-rupture tests. The pouring temperature and inoculant content strongly influenced the mean equiaxed grain size, which ranged between 2.36 and 6.55 mm. The primary microstructure of Inconel 713C® castings, owing to its complex chemical composition, comprised multiple phases, including γ, γ’, MC, M3B2, and Ni7Zr2. The mean size of γ’ was in the 0.446–0.613 μm range, depending on the casting variant. Grain refinement with CoAl2O4 at ambient temperature for each melt-pouring temperature led to increased yield strength (YS) and ultimate tensile strength (UTS). YS was in the range of 775–835 MPa, while UTS was in the range of 868–1010 MPa. A reverse trend was observed in samples that crept in 982 °C/152 MPa, while for each variant, the time to rupture exceeded 30 h. The maximum time to rupture was 46.1 h obtained in the unmodified casting poured at 1480 °C.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3