Affiliation:
1. School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
2. Heze Institute of Product Inspection and Testing, Heze 274000, China
3. Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Abstract
Pseudo-ternary half-Heusler thermoelectric materials, which are formed by filling the B sites of traditional ternary half-Heusler thermoelectric materials of ABX with equal atomic proportions of various elements, have attracted more and more attention due to their lower intrinsic lattice thermal conductivity. High-purity and relatively dense Ti1−xNbx(FeCoNi)Sb (x = 0, 0.01, 0.03, 0.05, 0.07 and 0.1) alloys were prepared via microwave synthesis combined with rapid hot-pressing sintering, and their thermoelectric properties are investigated in this work. The Seebeck coefficient was markedly increased via Nb substitution at Ti sites, which resulted in the optimized power factor of 1.45 μWcm−1K−2 for n-type Ti0.93Nb0.07(FeCoNi)Sb at 750 K. In addition, the lattice thermal conductivity was largely decreased due to the increase in phonon scattering caused by point defects, mass fluctuation and strain fluctuation introduced by Nb-doping. At 750 K, the lattice thermal conductivity of Ti0.97Nb0.03(FeCoNi)Sb is 2.37 Wm−1K−1, which is 55% and 23% lower than that of TiCoSb and Ti(FeCoNi)Sb, respectively. Compared with TiCoSb, the ZT of the Ti1−xNbx(FeCoNi)Sb samples were significantly increased. The average ZT values of the Nb-doped pseudo-ternary half-Heusler samples were dozens of times that of the TiCoSb prepared using the same process.
Funder
Taishan Scholar Program of Shandong Province
Shandong Province Higher Educational Youth Innovative Science and Technology Program
the Leader of Scientific Research Studio Program of Jinan
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献