Analysis of Structural Parameters of Steel–NC–UHPC Composite Beams

Author:

Zhang Dawei1,Ma Xiaogang1,Shen Huijie1,Guo Songsong2,Liu Chao2

Affiliation:

1. Shanghai Pudong Architectural Design & Research Institute Co., Ltd., Shanghai 201204, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

The cracking of the negative moment area of steel–normal concrete (NC) composite bridges is common owning to the low tensile strength of concrete. In order to solve the problem, Ultra High Performance Concrete (UHPC) is used to enhance the tensile performance of the negative moment area. This paper conducted interface experiments to study the bonding behaviour of the UHPC–NC interface. The design parametric analysis of steel–NC–UHPC composite bridges was carried out based on the interface experimental results. Firstly, slant shear tests and flexural shear tests were carried out to study the rationality of the interface handling methods. Then, the finite element model was used to analyze the state of every component in the composite beams based on experimental results, such as the stress of UHPC, concrete and steel plate. Finally, the calculation results of finite analysis were compared and summarized. It is concluded that (1) the chiseling interface can meet the utilization requirements of physical bridges. The average shear stress and flexural tensile strength of the chiseling interface are 10.29 MPa and 1.93 MPa, respectively. In the failure state, a slight interface damage occurs for specimens with a chiseling interface. (2) The influence on overall performance is different for changes in different design parameters. The thickness of concrete has a significant influence on the stress distribution of composite slabs. (3) Reliable interface simulation is conducted in the finite element models based on interface test results. The stress variation patterns are reflected in the change of design parameters.

Publisher

MDPI AG

Subject

General Materials Science

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3