Affiliation:
1. Faculty of Civil Engineering, Czestochowa University of Technology, 3 Akademicka Street, 42-200 Czestochowa, Poland
2. Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej Street 13/15, 42-200 Czestochowa, Poland
3. Department of Mechanical Processing of Wood, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Nowoursynowska Street, 166, 02-787 Warsaw, Poland
Abstract
This paper reviews the production of sinters using the spark plasma sintering method. SPS (spark plasma sintering) technology has been used for several decades, mainly in laboratories, to consolidate a huge number of both new and traditional materials. However, it is now more often introduced into practical industrial use, with equipment as early as the fifth generation capable of producing larger-size components at competitive costs. Although the mechanism of sintering with the use of this method is not yet understood, the effectiveness of the SPS process for the rapid and efficient consolidation of a wide range of materials with novel micro-structures remains indisputable. With a relatively wide variation in chemical composition, the structure allows the selection of appropriate consolidation parameters for these materials. The influence on the values of apparent density and mechanical properties depends on the parameters of the spark plasma sintering process. In order to achieve a density close to the theoretical density of sinters, optimization of the sintering parameters, i.e., sintering temperature, heating rate, sintering time, pressing pressure and protective atmosphere, should be carried out. In this paper, the optimization of spark plasma sintering of Si3N4–Al2O3–ZrO2 composite was carried out using the Taguchi method. The effects of four sintering factors, namely heating rate, sintering time, sintering temperature and sintering pressure, on the final density were investigated. Optimal sintering conditions were proposed and a confirmation experiment was conducted. The optimal combination of sintering conditions for spark plasma sintering (SPS) of Si3N4–Al2O3–ZrO2 composite for high apparent density was determined as A3-B3-C3-D2. Based on ANOVA analysis, it was found that the apparent density of sintering was significantly influenced by sintering temperature, followed by pressing pressure, sintering time and heating rate. Validation of the developed mathematical model predicting the apparent density of sinters showed close agreement between the predicted response results and experimental results.
Funder
National Science Centre, Poland
Subject
General Materials Science