Optimization of Spark Plasma Sintering Technology by Taguchi Method in the Production of a Wide Range of Materials: Review

Author:

Kruzel Robert1ORCID,Dembiczak Tomasz2ORCID,Wachowicz Joanna3ORCID

Affiliation:

1. Faculty of Civil Engineering, Czestochowa University of Technology, 3 Akademicka Street, 42-200 Czestochowa, Poland

2. Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej Street 13/15, 42-200 Czestochowa, Poland

3. Department of Mechanical Processing of Wood, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, Nowoursynowska Street, 166, 02-787 Warsaw, Poland

Abstract

This paper reviews the production of sinters using the spark plasma sintering method. SPS (spark plasma sintering) technology has been used for several decades, mainly in laboratories, to consolidate a huge number of both new and traditional materials. However, it is now more often introduced into practical industrial use, with equipment as early as the fifth generation capable of producing larger-size components at competitive costs. Although the mechanism of sintering with the use of this method is not yet understood, the effectiveness of the SPS process for the rapid and efficient consolidation of a wide range of materials with novel micro-structures remains indisputable. With a relatively wide variation in chemical composition, the structure allows the selection of appropriate consolidation parameters for these materials. The influence on the values of apparent density and mechanical properties depends on the parameters of the spark plasma sintering process. In order to achieve a density close to the theoretical density of sinters, optimization of the sintering parameters, i.e., sintering temperature, heating rate, sintering time, pressing pressure and protective atmosphere, should be carried out. In this paper, the optimization of spark plasma sintering of Si3N4–Al2O3–ZrO2 composite was carried out using the Taguchi method. The effects of four sintering factors, namely heating rate, sintering time, sintering temperature and sintering pressure, on the final density were investigated. Optimal sintering conditions were proposed and a confirmation experiment was conducted. The optimal combination of sintering conditions for spark plasma sintering (SPS) of Si3N4–Al2O3–ZrO2 composite for high apparent density was determined as A3-B3-C3-D2. Based on ANOVA analysis, it was found that the apparent density of sintering was significantly influenced by sintering temperature, followed by pressing pressure, sintering time and heating rate. Validation of the developed mathematical model predicting the apparent density of sinters showed close agreement between the predicted response results and experimental results.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3