Abstract
Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献