Flowability of Gel-Matrix and Magnetorheological Response for Carrageenan Magnetic Hydrogels

Author:

Ikeda Junko,Kurihara Tomoki,Ogura Keiju,Akama Shota,Kawai Mika,Mitsumata TetsuORCID

Abstract

The relationship between rheological features in the absence of a magnetic field and magnetic response was investigated for κ-carrageenan magnetic hydrogels containing carbonyl iron particles. The concentration of carrageenan was varied from 1.0 to 5.0 wt%, while the concentration of carbonyl iron was kept at 70 wt%. The magnetic response revealed that the change in storage modulus ΔG′ decreased inversely proportional to the carrageenan concentration. A characteristic strain γ1 where G′ equals to G″ was seen in a strain range of 10−3. It was found that ΔG′ was inversely proportional to the characteristic stress at γ1. Another characteristic strain γ2 where the loss tangent significantly increased was also analyzed. Similar to the behavior of γ1, ΔG′ was inversely proportional to γ2. The characteristic stresses at γ1 and γ2 were distributed at 80–720 Pa and 40–310 Pa, respectively. It was revealed that a giant magnetorheology higher than 1 MPa can be observed when the characteristic stresses at γ1 and γ2 are below approximately 240 Pa and 110 Pa, respectively.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart gels and their applications;Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications;2024

2. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders;Journal of Clinical Pharmacy and Therapeutics;2023-11-13

3. Spontaneous change of symmetry in a magnetoactive elastomer beam at its critical bending induced by a magnetic field;Smart Materials and Structures;2023-03-02

4. Force Sensing Performance of Hydrogel-based Magnetorheological Plastomers with Graphite;2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES);2022-12-07

5. Magnetic Response Detects the Strength of Carrageenan Network;Gels;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3