Statistical Significance Testing for Mixed Priors: A Combined Bayesian and Frequentist Analysis

Author:

Robnik JakobORCID,Seljak Uroš

Abstract

In many hypothesis testing applications, we have mixed priors, with well-motivated informative priors for some parameters but not for others. The Bayesian methodology uses the Bayes factor and is helpful for the informative priors, as it incorporates Occam’s razor via the multiplicity or trials factor in the look-elsewhere effect. However, if the prior is not known completely, the frequentist hypothesis test via the false-positive rate is a better approach, as it is less sensitive to the prior choice. We argue that when only partial prior information is available, it is best to combine the two methodologies by using the Bayes factor as a test statistic in the frequentist analysis. We show that the standard frequentist maximum likelihood-ratio test statistic corresponds to the Bayes factor with a non-informative Jeffrey’s prior. We also show that mixed priors increase the statistical power in frequentist analyses over the maximum likelihood test statistic. We develop an analytic formalism that does not require expensive simulations and generalize Wilks’ theorem beyond its usual regime of validity. In specific limits, the formalism reproduces existing expressions, such as the p-value of linear models and periodograms. We apply the formalism to an example of exoplanet transits, where multiplicity can be more than 107. We show that our analytic expressions reproduce the p-values derived from numerical simulations. We offer an interpretation of our formalism based on the statistical mechanics. We introduce the counting of states in a continuous parameter space using the uncertainty volume as the quantum of the state. We show that both the p-value and Bayes factor can be expressed as an energy versus entropy competition.

Funder

Heising-Simons Foundation

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference32 articles.

1. Jeffreys, H. (1998). The Theory of Probability, OUP Oxford.

2. Hierarchical Bayesian nonparametric models with applications;Bayesian Nonparametrics,2010

3. An introduction to empirical Bayes data analysis;Am. Stat.,1985

4. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (1995). Bayesian Data Analysis, Chapman and Hall/CRC.

5. Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio;Phys. Rev. D,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3