Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning

Author:

Ke Xianxin,Hu Ping,Yang Chenghao,Zhang Renbao

Abstract

During multi-turn dialogue, with the increase in dialogue turns, the difficulty of intention recognition and the generation of the following sentence reply become more and more difficult. This paper mainly optimizes the context information extraction ability of the Seq2Seq Encoder in multi-turn dialogue modeling. We fuse the historical dialogue information and the current input statement information in the encoder to capture the context dialogue information better. Therefore, we propose a BERT-based fusion encoder ProBERT-To-GUR (PBTG) and an enhanced ELMO model 3-ELMO-Attention-GRU (3EAG). The two models mainly enhance the contextual information extraction capability of multi-turn dialogue. To verify the effectiveness of the two proposed models, we demonstrate the effectiveness of our model by combining data based on the LCCC-large multi-turn dialogue dataset and the Naturalconv multi-turn dataset. The experimental comparison results show that, in the multi-turn dialogue experiments of the open domain and fixed topic, the two Seq2Seq coding models proposed are significantly improved compared with the current state-of-the-art models. For specified topic multi-turn dialogue, the 3EAG model has the average BLEU value reaches the optimal 32.4, which achieves the best language generation effect, and the BLEU value in the actual dialogue verification experiment also surpasses 31.8. for open-domain multi-turn dialogue. The average BLEU value of the PBTG model reaches 31.8, the optimal 31.8 achieves the best language generation effect, and the BLEU value in the actual dialogue verification experiment surpasses 31.2. So, the 3EAG model is more suitable for fixed-topic multi-turn dialogues for the two tasks. The PBTG model is more muscular in open-domain multi-turn dialogue tasks; therefore, our model is significant for promoting multi-turn dialogue research.

Funder

Shanghai Science and Technology Development Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3