High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling

Author:

Paesler MalteORCID,Lisec ThomasORCID,Kapels Holger

Abstract

The paper presents the realization and characterization of micro-inductors with core with active cooling capability for future integrated DC/DC converter solutions operating with wide bandgap semiconductors at high temperatures with high power densities. The cores are fabricated backend-of-line compatible by filling cavities in silicon wafers with soft magnetic iron particles and their subsequent agglomeration to rigid, porous 3D microstructures by atomic layer deposition. Wafer processing is presented as well as measurement results at up to 400 ∘C operating temperature in comparison to of-the-shelf inductors. Using a DC/DC converter operating at 25 MHz switching frequency efficiencies of 81 to 83% are demonstrated for input voltages between 5 V and 12 V. It is shown that the temperature of the novel micro-inductors decreases if an air flow through its porous core is applied. This feature could be especially helpful for the realization of resonant power converters with larger temperature stress to passive components.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3